References

  • [1] D. S. Broomhead and D. Lowe (1988) Multivariable functional interpolation and adaptive networks . Complex Systems 2 ( 3 ), pp. 321–355 . Cited by: §6.6 .
  • [2] S. Calinon (2019) Mixture models for the analysis, edition, and synthesis of continuous time series . In Mixture Models and Applications , N. Bouguila and W. Fan (Eds.) , pp. 39–57 . External Links: Document Cited by: §5.1 .
  • [3] S. Calinon (2020-06) Gaussians on Riemannian manifolds: applications for robot learning and adaptive control . IEEE Robotics and Automation Magazine (RAM) 27 ( 2 ), pp. 33–45 . External Links: Document Cited by: §7.5.1 , §7.5.9 .
  • [4] A. Ijspeert, J. Nakanishi, P. Pastor, H. Hoffmann, and S. Schaal (2013) Dynamical movement primitives: learning attractor models for motor behaviors . Neural Computation 25 ( 2 ), pp. 328–373 . Cited by: §6.6 .
  • [5] N. Jaquier, L. Rozo, D. G. Caldwell, and S. Calinon (2021) Geometry-aware manipulability learning, tracking and transfer . International Journal of Robotics Research (IJRR) 40 ( 2–3 ), pp. 624–650 . External Links: Document Cited by: §7.5.9 , §7.5.9 .
  • [6] W. Li and E. Todorov (2004) Iterative linear quadratic regulator design for nonlinear biological movement systems . In Proc. Intl Conf. on Informatics in Control, Automation and Robotics (ICINCO) , pp. 222–229 . Cited by: §7 .
  • [7] F. Marić, L. Petrović, M. Guberina, J. Kelly, and I. Petrović (2021) A Riemannian metric for geometry-aware singularity avoidance by articulated robots . Robotics and Autonomous Systems 145 , pp. 103865 . Cited by: §7.5.9 .
  • [8] D. Mayne (1966) A second-order gradient method for determining optimal trajectories of non-linear discrete-time systems . International Journal of Control 3 ( 1 ), pp. 85–95 . Cited by: §7 .
  • [9] F. A. Mussa-Ivaldi, S. F. Giszter, and E. Bizzi (August) Linear combinations of primitives in vertebrate motor control . Proc. National Academy of Sciences 91 , pp. 7534–7538 . Cited by: §5 .
  • [10] J. Nocedal and S. Wright (2006) Numerical optimization . Springer , New York, NY . Cited by: §7.4 .
  • [11] D. E. Orin and A. Goswami (2008) Centroidal momentum matrix of a humanoid robot: structure and properties . In Proc. IEEE/RSJ Intl Conf. on Intelligent Robots and Systems (IROS) , pp. 653–659 . Cited by: §7.5.9 .
  • [12] A. Paraschos, C. Daniel, J. Peters, and G. Neumann (2013) Probabilistic movement primitives . In Advances in Neural Information Processing Systems (NeurIPS) , C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger (Eds.) , pp. 2616–2624 . Cited by: §6.2 .
  • [13] F. C. Park and J. W. Kim (1998) Manipulability of closed kinematic chains . Journal of Mechanical Design 120 ( 4 ), pp. 542–548 . Cited by: §7.5.9 .
  • [14] H. H. Rosenbrock (1972) Differential dynamic programming . The Mathematical Gazette 56 ( 395 ), pp. 78–78 . Cited by: §7 .
  • [15] T. Yoshikawa (1985) Dynamic manipulability of robot manipulators . Robotic Systems 2 , pp. 113–124 . Cited by: §7.5.9 .